Fall 2020: OSE-5115 Interference, Diffraction, and Coherence

Tue & Thu 13:30 – 14:45 Dr. Aristide Dogariu, adogariu@mail.ucf.edu

1- Review
 a. Integral transforms, FT properties and theorems, 2D and 3D transforms and applications

2- Wave interference
 a. Wavefront - angular spectrum of plane waves
 b. Optical path difference
 c. Spherical waves interference
 d. Three/multiple waves interference

3- Diffraction
 a. Rayleigh-Sommerfeld integral
 b. Huyghens principle
 c. Fresnel diffraction
 d. Babinet’s, Poisson’s spot, Talbot
 e. Fraunhofer diffraction
 f. Asymptotic transforms and singularities

4- Interferometry
 a. Division of amplitude, division of wavefront
 b. Fizeau, Newton, Loyd, Michelson, Mach-Zehnder, Sagnac
 c. Multiple beams interferometers, Fabry-Perot, gratings
 d. Extended incoherent sources
 e. Optical testing
 f. Interferometric imaging
 g. Phase shifting, heterodyning, time delay, laser-ranging

5- Elements of coherence
 a. White light phenomena, Michelson
 b. Temporal and spatial coherence, Michelson & Young interferometers
 c. Coherence propagation, VanCittert Zernike
 d. Space-frequency representation, stationarity, Wiener Khinchin
 e. Fourier transform spectroscopy

Supplementary reading (recommended chapters):
 Papoulis, *Systems & Transforms with Applications in Optics* (1)
 Goodman, *Introduction to Fourier Optics* (2,3)
 Gaskill, *Linear Systems, Fourier Transforms, and Optics* (2,3)
 Goodman, *Statistical Optics* (5)
 Mandel and Wolf, *Optical Coherence* (3,5)
 Hecht, *Optics* (2,3,4,5)
 Hariharan, *Optical Interferometry* (4,5)

Grading:
 25% Exam 1 and Exam 2
 10% Homework
 40% Final (Comprehensive)